MathClass.f90 Source File


Source Code

module MathClass
   use fMathClass
   implicit none

   interface fstring
      module procedure fstring_Int, fstring_Real, fstring_Int_len, fstring_Real_len
   end interface fstring

   interface input
   module procedure input_Int, input_Real, input_IntVec, input_RealVec, input_IntArray, input_RealArray, input_String, input_logical
   end interface input

   interface zeroif
      module procedure zeroif_Int, zeroif_Real
   end interface zeroif

   interface removeWord
      module procedure removeWord_String
   end interface

contains

!########################################
   function norm(vec) result(a)
      real(8), intent(in)::vec(:)
      integer :: n
      real(8) :: a

      n = size(vec)
      a = dsqrt(dot_product(vec, vec))

   end function
!########################################

!########################################
   function SearchNearestCoord(Array, x) result(id)
      real(8), intent(in) :: Array(:, :)
      real(8), intent(in) :: x(:)
      integer, allocatable::xr(:)

      integer :: i, id, n, m, norm, tr_norm

      n = size(Array, 1)
      m = size(Array, 2)
      if (m /= size(x)) then
         stop "ERROR :: SearchNearestCoord >> size(Array,2) should be =size(x)"
      end if

      allocate (xr(m))
      do i = 1, n
         xr(:) = Array(i, :)
         tr_norm = dot_product(xr - x, xr - x)
         if (i == 1) then
            norm = tr_norm
            id = i
         else
            if (norm > tr_norm) then
               norm = tr_norm
               id = i
            else
               cycle
            end if
         end if
      end do

   end function
!########################################

!##################################################
   function SearchIDIntVec(Vec, val) result(id_)
      integer, intent(in) :: Vec(:)
      integer, intent(in) :: val

      integer :: i, id_

      do i = 1, size(Vec)
         if (Vec(i) == val) then
            id_ = i
            return
         end if
      end do

   end function
!##################################################
   subroutine heapsort(n, array)
      integer, intent(in) :: n
      integer, intent(inout) :: array(1:n)

      integer ::i, k, j, l
      integer :: t

      if (n .le. 0) then
         write (6, *) "Error, at heapsort"; stop
      end if
      if (n .eq. 1) return

      l = n/2 + 1
      k = n
      do while (k .ne. 1)
         if (l .gt. 1) then
            l = l - 1
            t = array(L)
         else
            t = array(k)
            array(k) = array(1)
            k = k - 1
            if (k .eq. 1) then
               array(1) = t
               exit
            end if
         end if
         i = l
         j = l + l
         do while (j .le. k)
            if (j .lt. k) then
               if (array(j) .lt. array(j + 1)) j = j + 1
            end if
            if (t .lt. array(j)) then
               array(i) = array(j)
               i = j
               j = j + j
            else
               j = k + 1
            end if
         end do
         array(i) = t
      end do

      return
   end subroutine heapsort

!==========================================================
!calculate cross product
!---------------------------
   function cross_product(a, b) result(c)
      real(8), intent(in) :: a(:), b(:)
      real(8), allocatable :: c(:)

      if (size(a) /= size(b)) then
         stop "wrong number on size a, b"
      end if

      allocate (c(size(a, 1)))
      if (size(c, 1) == 3) then
         c(1) = a(2)*b(3) - a(3)*b(2)
         c(2) = a(3)*b(1) - a(1)*b(3)
         c(3) = a(1)*b(2) - a(2)*b(1)
      else
         stop "wrong number at cross_product"
      end if

   end function cross_product
!=========================================================
!calculate diadic
!----------------------
   function diadic(a, b) result(c)
      real(8), intent(in) :: a(:), b(:)
      real(8), allocatable :: c(:, :)

      integer n, i, j

      allocate (c(size(a), size(b)))
      do i = 1, size(a)
         do j = 1, size(b)
            c(i, j) = a(i)*b(j)
         end do
      end do

   end function diadic
!==========================================================
!calculate gz
!--------------
   subroutine calcgz(x2, x11, x12, nod_coord, gzi)
      real(8), intent(in) :: nod_coord(:, :)
      real(8), intent(out) :: gzi
      integer, intent(in):: x2, x11, x12
      real(8) l
      real(8), allocatable::avec(:)

      allocate (avec(2))
      l = dot_product(nod_coord(x12, 1:2) - nod_coord(x11, 1:2), &
                      nod_coord(x12, 1:2) - nod_coord(x11, 1:2))
      l = l**(1.0d0/2.0d0)

      avec(1:2) = (nod_coord(x12, 1:2) - nod_coord(x11, 1:2))/l

      if (l == 0.0d0) then
         print *, "calcgz l=0"
         gzi = 0.0d0
      else
         gzi = 1.0d0/l*dot_product(nod_coord(x2, 1:2) - nod_coord(x11, 1:2), avec(1:2))
      end if

      deallocate (avec)

   end subroutine calcgz
!==========================================================
   subroutine eigen_2d(Amat, eigenvector)
      real(8), intent(in)::Amat(:, :)
      real(8), intent(inout)::eigenvector(:, :)

      real(8)::b, c, phy, eigenvalue(2)
      integer i, j

      eigenvalue(:) = 0.0d0
      eigenvector(:, :) = 0.0d0

      b = -1.0d0*(Amat(1, 1) + Amat(2, 2))
      c = Amat(1, 1)*Amat(2, 2) - Amat(1, 2)*Amat(1, 2)

      if (Amat(1, 2) /= Amat(2, 1)) then
         stop "input matrice is not symmetric"
      end if

      do i = 1, 2
         eigenvalue(i) = (-1.0d0*b + ((-1.0d0)**dble(i))*(b*b - 4.0d0*c)**(1.0d0/2.0d0))*(0.50d0)
      end do

      do i = 1, 2
         if (Amat(1, 2) == 0) then
            cycle
         elseif (Amat(1, 2) /= 0) then
            phy = atan((eigenvalue(i) - Amat(1, 1))/Amat(1, 2))

            do j = 1, 2
               eigenvector(i, 1:2) = (/cos(phy), sin(phy)/)
            end do
         end if
      end do

      do i = 1, 2
         eigenvector(i, :) = eigenvalue(i)*eigenvector(i, :)
      end do
   end subroutine eigen_2d
!==========================================================
   function signmm(a) result(b)
      real(8), intent(in)::a
      real(8) b

      if (a > 0) then
         b = 1.0d0
      elseif (a < 0) then
         b = -1.0d0
      elseif (a == 0) then
         b = 0.0d0
      else
         stop "ERROR: Invalid Real(8) in function_signm"
      end if

   end function signmm
!==========================================================
   recursive function det_mat(a, n) result(det)
      integer, intent(in) :: n
      real(8), intent(in) :: a(n, n)
      real(8) det, b(n - 1, n - 1)
      integer i
      if (n > 1) then
         det = 0.0d0
         do i = 1, n
            b(1:i - 1, 1:n - 1) = a(1:i - 1, 2:n)
            b(i:n - 1, 1:n - 1) = a(i + 1:n, 2:n)
            det = det + (-1.0d0)**(i + 1) &
                  *a(i, 1)*det_mat(b, n - 1)

         end do
      else
         det = a(1, 1)
      end if
   end function det_mat
!=====================================================================================
   subroutine trans_rank_2(A, A_T)
      real(8), intent(in)::A(:, :)
      real(8), allocatable, intent(out)::A_T(:, :)
      integer n, m, i, j

      n = size(A, 1)
      m = size(A, 2)
      if (.not. allocated(A_T)) allocate (A_T(m, n))

      do i = 1, n
         do j = 1, m
            A_T(j, i) = A(i, j)
         end do
      end do

   end subroutine trans_rank_2
!==================================================================================
   function trans1(A) result(A_T)
      real(8), intent(in)::A(:)
      real(8), allocatable::A_T(:, :)
      integer n, m, i, j

      n = size(A)
      if (.not. allocated(A_T)) allocate (A_T(1, n))

      do i = 1, n
         A_T(1, i) = A(i)
      end do

   end function trans1
!==================================================================================
   function trans2(A) result(A_T)
      real(8), intent(in)::A(:, :)
      real(8), allocatable::A_T(:, :)
      integer n, m, i, j

      n = size(A, 1)
      m = size(A, 2)
      if (.not. allocated(A_T)) allocate (A_T(m, n))

      do i = 1, n
         do j = 1, m
            A_T(j, i) = A(i, j)
         end do
      end do

   end function trans2
!==================================================================================
   subroutine inverse_rank_2(A, A_inv)
      real(8), intent(in)::A(:, :)
      real(8), allocatable::A_inv(:, :)
      real(8) detA, detA_1
      integer m, n

      m = size(A, 1)
      n = size(A, 2)
      if (.not. allocated(A_inv)) allocate (A_inv(m, n))
      detA = det_mat(A, n)
      if (detA == 0.0d0) stop "ERROR: inverse, detA=0"
      detA_1 = 1.0d0/detA
      if (n == 2) then
         A_inv(1, 1) = detA_1*A(2, 2)
         A_inv(1, 2) = -detA_1*A(1, 2)
         A_inv(2, 1) = -detA_1*A(2, 1)
         A_inv(2, 2) = detA_1*A(1, 1)
      elseif (n == 3) then
         A_inv(1, 1) = detA_1*(A(2, 2)*A(3, 3) - A(2, 3)*A(3, 2))
         A_inv(1, 2) = detA_1*(A(1, 3)*A(3, 2) - A(1, 2)*A(3, 3))
         A_inv(1, 3) = detA_1*(A(1, 2)*A(2, 3) - A(1, 3)*A(2, 2))
         A_inv(2, 1) = detA_1*(A(2, 3)*A(3, 1) - A(2, 1)*A(3, 3))
         A_inv(2, 2) = detA_1*(A(1, 1)*A(3, 3) - A(1, 3)*A(3, 1))
         A_inv(2, 3) = detA_1*(A(1, 3)*A(2, 1) - A(1, 1)*A(2, 3))
         A_inv(3, 1) = detA_1*(A(2, 1)*A(3, 2) - A(2, 2)*A(3, 1))
         A_inv(3, 2) = detA_1*(A(1, 2)*A(3, 1) - A(1, 1)*A(3, 2))
         A_inv(3, 3) = detA_1*(A(1, 1)*A(2, 2) - A(1, 2)*A(2, 1))
      else
         print *, "ERROR: Aij with i=j=", n, "/=2or3"
      end if

   end subroutine inverse_rank_2
!==================================================================================
   subroutine tensor_exponential(A, expA, TOL, itr_tol)
      real(8), intent(in)::A(:, :), TOL
      real(8), allocatable, intent(inout)::expA(:, :)
      integer, intent(in)::itr_tol
      real(8), allocatable::increA(:, :)
      real(8) increment, NN
      integer i, j, n

      if (.not. allocated(expA)) allocate (expA(size(A, 1), size(A, 2)))
      allocate (increA(size(A, 1), size(A, 2)))
      if (size(A, 1) /= size(A, 2)) stop "ERROR:tensor exp is not a square matrix"

      expA(:, :) = 0.0d0
      do n = 1, size(expA, 1)
         expA(n, n) = 1.0d0
      end do
      NN = 1.0d0
      increA(:, :) = expA(:, :)
      do n = 1, itr_tol
         if (n > 1) then
            NN = NN*(NN + 1.0d0)
         end if
         increA(:, :) = matmul(increA, A)
         expA(:, :) = expA(:, :) + 1.0d0/NN*increA(:, :)

         increment = 0.0d0
         do i = 1, size(A, 1)
            do j = 1, size(A, 2)
               increment = increment + 1.0d0/NN*increA(i, j)*increA(i, j)
            end do
         end do

         if (increment <= TOL) then
            exit
         else
            if (n >= itr_tol) then
               stop "tensor exponential is not converged"
            end if
            cycle
         end if
      end do

      deallocate (increA)

   end subroutine tensor_exponential
!==================================================================================
   subroutine tensor_expo_der(A, expA_A, TOL, itr_tol)
      real(8), intent(in)::A(:, :), TOL
      real(8), allocatable, intent(inout)::expA_A(:, :, :, :)
      integer, intent(in)::itr_tol
      real(8), allocatable::increA_1(:, :), increA_2(:, :), increA_3(:, :, :, :), I_ij(:, :), A_inv(:, :)
      real(8) increment, NN
      integer i, j, k, l, n, m, o

      if (.not. allocated(expA_A)) allocate (expA_A(size(A, 1), size(A, 1), size(A, 1), size(A, 1)))
      allocate (I_ij(size(A, 1), size(A, 1)))
      allocate (increA_1(size(A, 1), size(A, 1)))
      allocate (increA_2(size(A, 1), size(A, 1)))
      allocate (increA_3(size(A, 1), size(A, 1), size(A, 1), size(A, 1)))
      if (size(A, 1) /= size(A, 2)) stop "ERROR:tensor exp is not a square matrix"

      call inverse_rank_2(A, A_inv)

      I_ij(:, :) = 0.0d0
      do n = 1, size(expA_A, 1)
         I_ij(n, n) = 1.0d0
      end do
      NN = 1.0d0

      do i = 1, size(A, 1)
         do j = 1, size(A, 1)
            do k = 1, size(A, 1)
               do l = 1, size(A, 1)
                  expA_A(i, j, k, l) = I_ij(i, k)*I_ij(l, j)
               end do
            end do
         end do
      end do

      increA_1(:, :) = I_ij(:, :)
      increA_2(:, :) = I_ij(:, :)
      do n = 1, itr_tol
         if (n > 2) then
            NN = NN*(NN + 1.0d0)
         end if
         increA_1(:, :) = A_inv(:, :)
         increA_2(:, :) = matmul(increA_2, A)

         increA_3(:, :, :, :) = 0.0d0
         do m = 1, n
            increA_1(:, :) = matmul(increA_1, A)

            increA_2(:, :) = matmul(increA_2, A_inv)

            do i = 1, size(A, 1)
               do j = 1, size(A, 1)
                  do k = 1, size(A, 1)
                     do l = 1, size(A, 1)
                        increA_3(i, j, k, l) = increA_3(i, j, k, l) + increA_1(i, k)*increA_2(l, j)
                        expA_A(i, j, k, l) = expA_A(i, j, k, l) + 1.0d0/NN*increA_3(i, j, k, l)
                     end do
                  end do
               end do
            end do
         end do

         do i = 1, size(A, 1)
            do j = 1, size(A, 1)
               do k = 1, size(A, 1)
                  do l = 1, size(A, 1)
                     increment = increment + 1.0d0/NN*increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l)
                  end do
               end do
            end do
         end do

         if (increment <= TOL) then
            exit
         else
            if (n >= itr_tol) then
               stop "tensor exponential is not converged"
            end if
            cycle
         end if
      end do

      deallocate (increA_1, increA_2, increA_3, I_ij, A_inv)

   end subroutine tensor_expo_der
!==================================================================================

   function GetNormRe(a) result(b)
      real(8), intent(in)::a(:)
      real(8) :: b
      b = dot_product(a, a)
   end function
!==================================================================================

   function GetNormMatRe(a) result(b)
      real(8), intent(in)::a(:, :)
      real(8) :: b
      integer :: i, j
      b = 0
      do i = 1, size(a, 1)
         do j = 1, size(a, 2)
            b = b + a(i, j)*a(i, j)
         end do
      end do
   end function
!==================================================================================

   function trace(a) result(b)
      real(8), intent(in)::a(:, :)
      real(8) :: b
      integer :: i, j
      b = 0
      do i = 1, size(a, 1)
         b = b + a(i, i)
      end do
   end function
!==================================================================================

!==================================================================================
   function pi(n) result(res)
      integer, intent(in)::n
      real(8) :: ptr
      real(8) :: an, bn, tn, pn
      real(8) :: atr, btr, ttr
      real(8) :: res

      integer :: i

      an = 1.0d0
      bn = 1.0d0/sqrt(2.0d0)
      tn = 0.250d0
      pn = 1.00d0
      do i = 1, n
         atr = 0.50d0*(an + bn)
         btr = dsqrt(an*bn)
         ttr = tn - pn*(atr - an)*(atr - an)
         ptr = 2.0d0*pn

         an = atr
         bn = btr
         tn = ttr
         pn = ptr

         res = (atr + btr)*(atr + btr)/4.0d0/ttr
      end do

   end function
!==================================================================================

!==================================================================================
   function fstring_int(x) result(a)
      integer, intent(in) :: x
      character(len=20)        :: a

      write (a, *) x

   end function
!==================================================================================

!==================================================================================
   function fstring_int_len(x, length) result(a)
      integer, intent(in) :: x
      integer, intent(in) :: length
      character(len=length)        :: a

      write (a, *) x

   end function
!==================================================================================

!==================================================================================
   function fstring_real(x) result(a)
      real(8), intent(in) :: x
      character(len=20)        :: a

      write (a, '(f0.8)') x

   end function
!==================================================================================

!==================================================================================
   function fstring_real_len(x, length) result(a)
      real(8), intent(in) :: x
      integer, intent(in) :: length
      character(len=60)        :: a
      character*40                                                :: form

      write (a, '(f0.10)') x

   end function
!==================================================================================

!==================================================================================
   function fint(ch) result(a)
      character(*), intent(in)                        :: ch
      integer                                :: a

      read (ch, *) a

   end function
!==================================================================================

!==================================================================================
   function freal(ch) result(a)
      character(*), intent(in)                        :: ch
      real(8)                                :: a

      read (ch, *) a

   end function
!==================================================================================

!==================================================================================
   function input_Int(default, option) result(val)
      integer, intent(in) :: default
      integer, optional, intent(in)::option
      integer :: val

      if (present(option)) then
         val = option
      else
         val = default
      end if

   end function
!==================================================================================

!==================================================================================
   function input_Real(default, option) result(val)
      real(8), intent(in) :: default
      real(8), optional, intent(in)::option
      real(8) :: val

      if (present(option)) then
         val = option
      else
         val = default
      end if

   end function
!==================================================================================

!==================================================================================
   function input_IntVec(default, option) result(val)
      integer, intent(in) :: default(:)
      integer, optional, intent(in)::option(:)
      integer, allocatable :: val(:)
      integer :: n, m

      if (present(option)) then
         n = size(option, 1)
         allocate (val(n))
         val(:) = option(:)
      else
         n = size(default, 1)
         allocate (val(n))
         val(:) = default(:)
      end if

   end function
!==================================================================================

!==================================================================================
   function input_Realvec(default, option) result(val)
      real(8), intent(in) :: default(:)
      real(8), optional, intent(in)::option(:)
      real(8), allocatable :: val(:)
      integer :: n, m

      if (present(option)) then
         n = size(option, 1)
         allocate (val(n))
         val(:) = option(:)
      else
         n = size(default, 1)
         allocate (val(n))
         val(:) = default(:)
      end if

   end function
!==================================================================================

!==================================================================================
   function input_IntArray(default, option) result(val)
      integer, intent(in) :: default(:, :)
      integer, optional, intent(in)::option(:, :)
      integer, allocatable :: val(:, :)
      integer :: n, m

      if (present(option)) then
         n = size(option, 1)
         m = size(option, 2)
         allocate (val(n, m))
         val(:, :) = option(:, :)
      else
         n = size(default, 1)
         m = size(default, 2)
         allocate (val(n, m))
         val(:, :) = default(:, :)
      end if

   end function
!==================================================================================

!==================================================================================
   function input_RealArray(default, option) result(val)
      real(8), intent(in) :: default(:, :)
      real(8), optional, intent(in)::option(:, :)
      real(8), allocatable :: val(:, :)
      integer :: n, m

      if (present(option)) then
         n = size(option, 1)
         m = size(option, 2)
         allocate (val(n, m))
         val(:, :) = option(:, :)
      else
         n = size(default, 1)
         m = size(default, 2)
         allocate (val(n, m))
         val(:, :) = default(:, :)
      end if

   end function
!==================================================================================

!==================================================================================
   function input_String(default, option) result(val)
      character(*), intent(in) :: default
      character(*), optional, intent(in)::option
      character(len(default)) :: val

      if (present(option)) then
         val = option
      else
         val = default
      end if

   end function
!==================================================================================

!==================================================================================
   function input_logical(default, option) result(val)
      logical, intent(in) :: default
      logical, optional, intent(in)::option
      logical :: val

      if (present(option)) then
         val = option
      else
         val = default
      end if

   end function
!==================================================================================

   function zeroif_Int(val, negative, positive) result(retval)
      integer, intent(in)::val
      integer :: retval
      logical, optional, intent(in) :: negative, positive

      if (val /= val) then
         print *, "ERROR :: MAthClass >> zeroif_Int is invalid"
      end if
      retval = val
      if (present(negative)) then
         if (negative .eqv. .true.) then
            if (val < 0) then
               retval = 0
            end if
         end if
      end if

      if (present(positive)) then
         if (positive .eqv. .true.) then
            if (val > 0) then
               retval = 0
            end if
         end if
      end if

   end function

   function zeroif_Real(val, negative, positive) result(retval)
      real(8), intent(in)::val
      real(8) :: retval
      logical, optional, intent(in) :: negative, positive

      if (val /= val) then
         print *, "ERROR :: MAthClass >> zeroif_Int is invalid"
      end if
      retval = val
      if (present(negative)) then
         if (negative .eqv. .true.) then
            if (val < 0.0d0) then
               retval = 0.0d0
            end if
         end if
      end if

      if (present(positive)) then
         if (positive .eqv. .true.) then
            if (val > 0.0d0) then
               retval = 0.0d0
            end if
         end if
      end if

   end function

! ########################################################
   subroutine removeWord_String(str, keyword, itr, Compare)
      character(*), intent(inout)::str
      character(*), intent(in)::keyword

      integer :: len_total, len_kw, i, j, n, itr_max
      integer, optional, intent(in)::itr
      logical, optional, intent(in)::Compare
      logical :: bk

      if (present(Compare)) then
         if (Compare .eqv. .true.) then
            print *, "Before :: ", str
         end if
      end if

      itr_max = input(default=1, option=itr)
      bk = .false.
      len_total = len(str)
      len_kw = len(keyword)

      do i = 1, itr_max
         n = index(str, keyword)
         do j = n, n + len_kw
            str(j:j) = " "
         end do
         if (n == 0) then
            exit
         end if
      end do

      if (present(Compare)) then
         if (Compare .eqv. .true.) then
            print *, "After :: ", str
         end if
      end if

   end subroutine
! ########################################################

end module MathClass