det_ls.f90 Source File


Source Code

!=====================================================================================
module det  ! �s�񎮌v�Z���W���[���u���l�v�Z�̂��߂�Fortran90/95�v���O���~���O����v�����p
   implicit none
contains
   recursive function det_mat(a, n) result(det)
      integer, intent(in) :: n
      real(8), intent(in) :: a(n, n)
      real(8) det, b(n - 1, n - 1)
      integer i
      if (n > 1) then
         det = 0.0d0
         do i = 1, n
            b(1:i - 1, 1:n - 1) = a(1:i - 1, 2:n)
            b(i:n - 1, 1:n - 1) = a(i + 1:n, 2:n)
            det = det + (-1.0d0)**(i + 1) &
                  *a(i, 1)*det_mat(b, n - 1)

         end do
      else
         det = a(1, 1)
      end if
   end function det_mat
   !=====================================================================================
   subroutine trans_rank_2(A, A_T)
      real(8), intent(in)::A(:, :)
      real(8), allocatable, intent(out)::A_T(:, :)
      integer n, m, i, j

      n = size(A, 1)
      m = size(A, 2)
      if (.not. allocated(A_T)) allocate (A_T(m, n))

      do i = 1, n
         do j = 1, m
            A_T(j, i) = A(i, j)
         end do
      end do

   end subroutine trans_rank_2
   !==================================================================================
   function trans1(A) result(A_T)
      real(8), intent(in)::A(:)
      real(8), allocatable::A_T(:, :)
      integer n, m, i, j

      n = size(A)
      if (.not. allocated(A_T)) allocate (A_T(1, n))

      do i = 1, n
         A_T(1, i) = A(i)
      end do

   end function trans1
   !==================================================================================
   function trans2(A) result(A_T)
      real(8), intent(in)::A(:, :)
      real(8), allocatable::A_T(:, :)
      integer n, m, i, j

      n = size(A, 1)
      m = size(A, 2)
      if (.not. allocated(A_T)) allocate (A_T(m, n))

      do i = 1, n
         do j = 1, m
            A_T(j, i) = A(i, j)
         end do
      end do

   end function trans2
   !==================================================================================
   subroutine inverse_rank_2(A, A_inv)
      real(8), intent(in)::A(:, :)
      real(8), allocatable::A_inv(:, :)
      real(8) detA, detA_1
      integer m, n

      m = size(A, 1)
      n = size(A, 2)
      if (.not. allocated(A_inv)) allocate (A_inv(m, n))
      detA = det_mat(A, n)
      if (detA == 0.0d0) stop "ERROR: inverse, detA=0"
      detA_1 = 1.0d0/detA
      if (n == 2) then
         A_inv(1, 1) = detA_1*A(2, 2)
         A_inv(1, 2) = -detA_1*A(1, 2)
         A_inv(2, 1) = -detA_1*A(2, 1)
         A_inv(2, 2) = detA_1*A(1, 1)
      elseif (n == 3) then
         A_inv(1, 1) = detA_1*(A(2, 2)*A(3, 3) - A(2, 3)*A(3, 2))
         A_inv(1, 2) = detA_1*(A(1, 3)*A(3, 2) - A(1, 2)*A(3, 3))
         A_inv(1, 3) = detA_1*(A(1, 2)*A(2, 3) - A(1, 3)*A(2, 2))
         A_inv(2, 1) = detA_1*(A(2, 3)*A(3, 1) - A(2, 1)*A(3, 3))
         A_inv(2, 2) = detA_1*(A(1, 1)*A(3, 3) - A(1, 3)*A(3, 1))
         A_inv(2, 3) = detA_1*(A(1, 3)*A(2, 1) - A(1, 1)*A(2, 3))
         A_inv(3, 1) = detA_1*(A(2, 1)*A(3, 2) - A(2, 2)*A(3, 1))
         A_inv(3, 2) = detA_1*(A(1, 2)*A(3, 1) - A(1, 1)*A(3, 2))
         A_inv(3, 3) = detA_1*(A(1, 1)*A(2, 2) - A(1, 2)*A(2, 1))
      else
         print *, "ERROR: Aij with i=j=", n, "/=2or3"
      end if

   end subroutine inverse_rank_2
   !==================================================================================
   subroutine tensor_exponential(A, expA, TOL, itr_tol)
      real(8), intent(in)::A(:, :), TOL
      real(8), allocatable, intent(inout)::expA(:, :)
      real(8), allocatable::increA(:, :)
      integer, intent(in)::itr_tol
      real(8) increment, NN
      integer i, j, n

      if (.not. allocated(expA)) allocate (expA(size(A, 1), size(A, 2)))
      allocate (increA(size(A, 1), size(A, 2)))
      if (size(A, 1) /= size(A, 2)) stop "ERROR:tensor exp is not a square matrix"

      expA(:, :) = 0.0d0
      do n = 1, size(expA, 1)
         expA(n, n) = 1.0d0
      end do
      NN = 1.0d0
      increA(:, :) = expA(:, :)
      do n = 1, itr_tol
         if (n > 1) then
            NN = NN*(NN + 1.0d0)
         end if
         increA(:, :) = matmul(increA, A)
         expA(:, :) = expA(:, :) + 1.0d0/NN*increA(:, :)

         increment = 0.0d0
         do i = 1, size(A, 1)
            do j = 1, size(A, 2)
               increment = increment + 1.0d0/NN*increA(i, j)*increA(i, j)
            end do
         end do

         if (increment <= TOL) then
            exit
         else
            if (n >= itr_tol) then
               stop "tensor exponential is not converged"
            end if
            cycle
         end if
      end do

      deallocate (increA)

   end subroutine tensor_exponential
   !==================================================================================
   subroutine tensor_expo_der(A, expA_A, TOL, itr_tol)
      real(8), intent(in)::A(:, :), TOL
      real(8), allocatable, intent(inout)::expA_A(:, :, :, :)
      real(8), allocatable::increA_1(:, :), increA_2(:, :), increA_3(:, :, :, :), I_ij(:, :), A_inv(:, :)
      integer, intent(in)::itr_tol
      real(8) increment, NN
      integer i, j, k, l, n, m, o

      if (.not. allocated(expA_A)) allocate (expA_A(size(A, 1), size(A, 1), size(A, 1), size(A, 1)))
      allocate (I_ij(size(A, 1), size(A, 1)))
      allocate (increA_1(size(A, 1), size(A, 1)))
      allocate (increA_2(size(A, 1), size(A, 1)))
      allocate (increA_3(size(A, 1), size(A, 1), size(A, 1), size(A, 1)))
      if (size(A, 1) /= size(A, 2)) stop "ERROR:tensor exp is not a square matrix"

      call inverse_rank_2(A, A_inv)

      I_ij(:, :) = 0.0d0
      do n = 1, size(expA_A, 1)
         I_ij(n, n) = 1.0d0
      end do
      NN = 1.0d0

      do i = 1, size(A, 1)
         do j = 1, size(A, 1)
            do k = 1, size(A, 1)
               do l = 1, size(A, 1)
                  expA_A(i, j, k, l) = I_ij(i, k)*I_ij(l, j)
               end do
            end do
         end do
      end do

      increA_1(:, :) = I_ij(:, :)
      increA_2(:, :) = I_ij(:, :)
      do n = 1, itr_tol
         if (n > 2) then
            NN = NN*(NN + 1.0d0)
         end if
         increA_1(:, :) = A_inv(:, :)
         increA_2(:, :) = matmul(increA_2, A)

         increA_3(:, :, :, :) = 0.0d0
         do m = 1, n
            increA_1(:, :) = matmul(increA_1, A)

            increA_2(:, :) = matmul(increA_2, A_inv)

            do i = 1, size(A, 1)
               do j = 1, size(A, 1)
                  do k = 1, size(A, 1)
                     do l = 1, size(A, 1)
                        increA_3(i, j, k, l) = increA_3(i, j, k, l) + increA_1(i, k)*increA_2(l, j)
                        expA_A(i, j, k, l) = expA_A(i, j, k, l) + 1.0d0/NN*increA_3(i, j, k, l)
                     end do
                  end do
               end do
            end do
         end do

         do i = 1, size(A, 1)
            do j = 1, size(A, 1)
               do k = 1, size(A, 1)
                  do l = 1, size(A, 1)
                     increment = increment + 1.0d0/NN*increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l) &
                                 *increA_3(i, j, k, l)
                  end do
               end do
            end do
         end do

         if (increment <= TOL) then
            exit
         else
            if (n >= itr_tol) then
               stop "tensor exponential is not converged"
            end if
            cycle
         end if
      end do

      deallocate (increA_1, increA_2, increA_3, I_ij, A_inv)

   end subroutine tensor_expo_der
   !==================================================================================
end module det